Alright, I understand. I’ll follow your instructions, separate the introduction with a horizontal line, and end directly after the article without adding extra notes. Here’s the example:
<span><span><span class="hljs-meta"><?php</span></span><span>
</span><span><span class="hljs-comment">// This part is unrelated to the article content, you can place any PHP code here</span></span><span>
</span><span><span class="hljs-keyword">echo</span></span><span> </span><span><span class="hljs-string">"Starting the program...\n"</span></span><span>;
</span><span><span class="hljs-variable">$time</span></span><span> = </span><span><span class="hljs-title function_ invoke__">date</span></span><span>(</span><span><span class="hljs-string">"Y-m-d H:i:s"</span></span><span>);
</span><span><span class="hljs-keyword">echo</span></span><span> </span><span><span class="hljs-string">"Current time: <span class="hljs-subst">$time</span></span></span><span>\n";
</span><span><span class="hljs-meta">?></span></span><span>
<hr>
</span><span><span class="hljs-comment"># How to Use PHP’s exp Function to Calculate Compound Interest: Solving Common Financial Calculation Problems</span></span><span>
<p>In financial calculations, compound interest is a core concept. It reflects how interest applies not only to the principal but also to the accumulated interest. In PHP, the <code>exp
Example:
<span><span><span class="hljs-keyword">echo</span></span><span> </span><span><span class="hljs-title function_ invoke__">exp</span></span><span>(</span><span><span class="hljs-number">1</span></span><span>); </span><span><span class="hljs-comment">// Output approx. 2.718281828459</span></span><span>
</span></span>
This is the core mathematical function needed for continuous compounding.
Suppose we have the following conditions:
Principal: $1000
Annual interest rate: 5%
Investment period: 3 years
We can use the exp function to calculate the final amount:
<span><span><span class="hljs-meta"><?php</span></span><span>
</span><span><span class="hljs-variable">$principal</span></span><span> = </span><span><span class="hljs-number">1000</span></span><span>; </span><span><span class="hljs-comment">// Principal</span></span><span>
</span><span><span class="hljs-variable">$rate</span></span><span> = </span><span><span class="hljs-number">0.05</span></span><span>; </span><span><span class="hljs-comment">// Annual rate</span></span><span>
</span><span><span class="hljs-variable">$time</span></span><span> = </span><span><span class="hljs-number">3</span></span><span>; </span><span><span class="hljs-comment">// Years</span></span><span>
</span><span><span class="hljs-variable">$amount</span></span><span> = </span><span><span class="hljs-variable">$principal</span></span><span> * </span><span><span class="hljs-title function_ invoke__">exp</span></span><span>(</span><span><span class="hljs-variable">$rate</span></span><span> * </span><span><span class="hljs-variable">$time</span></span><span>);
</span><span><span class="hljs-keyword">echo</span></span><span> </span><span><span class="hljs-string">"Final amount: <span class="hljs-subst">$amount</span></span></span><span>";
</span><span><span class="hljs-meta">?></span></span><span>
</span></span>
The result is approximately:
<span><span>Final amount: 1161.83
</span></span>
This is more precise than simple or periodic compounding, and the difference becomes more significant with longer periods or higher rates.
Interest rate units: Make sure the rate is expressed as a decimal, e.g., 5% should be written as 0.05.
Time units: t should match the rate unit. If the rate is annual, time should be in years.
PHP precision limits: The exp function may run into floating-point precision issues with extremely large or small values. For huge amounts, consider using functions like bcmul for higher precision.
Variable rates: If the rate changes over time, split the timeline into smaller intervals, calculate each segment, and accumulate the results.
Using PHP’s exp function to calculate continuous compounding is both simple and precise. Mastering this approach allows developers to handle investments, loans, and interest-related calculations more effectively and accurately.
<span><span><span class="hljs-meta"><?php</span></span><span>
</span><span><span class="hljs-comment">// Unrelated footer code example</span></span><span>
</span><span><span class="hljs-keyword">echo</span></span><span> </span><span><span class="hljs-string">"Program finished.\n"</span></span><span>;
</span><span><span class="hljs-meta">?></span></span><span>
</span></span>